Welcome To SUNTEC Tutorial Point - www.sunteccampus.com

  • SUNTEC

    SUNTEC Computer college

  • Computer Programming

    Computer Programming

  • Web Development

    Web Development

  • Computer Accounting

    Computer Accounting

  • SUNTEC Graphic Designing

    Graphic designing

Home » » SQL Last Day

SQL Last Day

LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if the argument is invalid.
mysql> SELECT LAST_DAY('2003-02-05');
+---------------------------------------------------------+
| LAST_DAY('2003-02-05')                                  |
+---------------------------------------------------------+
| 2003-02-28                                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

LOCALTIME and LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

LOCALTIMESTAMP and LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. The dayofyear value must be greater than 0 or the result will be NULL.
mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);
+---------------------------------------------------------+
| MAKEDATE(2001,31), MAKEDATE(2001,32)                    |
+---------------------------------------------------------+
| '2001-01-31', '2001-02-01'                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute and second arguments.
mysql> SELECT MAKETIME(12,15,30);
+---------------------------------------------------------+
| MAKETIME(12,15,30)                                      |
+---------------------------------------------------------+
| '12:15:30'                                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

MICROSECOND(expr)

Returns the microseconds from the time or datetime expression (expr) as a number in the range from 0 to 999999.
mysql> SELECT MICROSECOND('12:00:00.123456');
+---------------------------------------------------------+
| MICROSECOND('12:00:00.123456')                          |
+---------------------------------------------------------+
| 123456                                                  |
+---------------------------------------------------------+
1 row in set (0.00 sec)

MINUTE(time)

Returns the minute for time, in the range 0 to 59.
mysql> SELECT MINUTE('98-02-03 10:05:03');
+---------------------------------------------------------+
| MINUTE('98-02-03 10:05:03')                             |
+---------------------------------------------------------+
| 5                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

MONTH(date)

Returns the month for date, in the range 0 to 12.
mysql> SELECT MONTH('1998-02-03')
+---------------------------------------------------------+
| MONTH('1998-02-03')                                     |
+---------------------------------------------------------+
| 2                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

MONTHNAME(date)

Returns the full name of the month for a date.
mysql> SELECT MONTHNAME('1998-02-05');
+---------------------------------------------------------+
| MONTHNAME('1998-02-05')                                 |
+---------------------------------------------------------+
| February                                                |
+---------------------------------------------------------+
1 row in set (0.00 sec)

NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. This value is expressed in the current time zone.
mysql> SELECT NOW();
+---------------------------------------------------------+
| NOW()                                                   |
+---------------------------------------------------------+
| 1997-12-15 23:50:26                                     |
+---------------------------------------------------------+
1 row in set (0.00 sec)

PERIOD_ADD(P,N)

Adds N months to a period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note that the period argument P is not a date value.
mysql> SELECT PERIOD_ADD(9801,2);
+---------------------------------------------------------+
| PERIOD_ADD(9801,2)                                      |
+---------------------------------------------------------+
| 199803                                                  |
+---------------------------------------------------------+
1 row in set (0.00 sec)

PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. These periods P1 and P2 should be in the format YYMM or YYYYMM. Note that the period arguments P1 and P2 are not date values.
mysql> SELECT PERIOD_DIFF(9802,199703);
+---------------------------------------------------------+
| PERIOD_DIFF(9802,199703)                                |
+---------------------------------------------------------+
| 11                                                      |
+---------------------------------------------------------+
1 row in set (0.00 sec)

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.
mysql> SELECT QUARTER('98-04-01');
+---------------------------------------------------------+
| QUARTER('98-04-01')                                     |
+---------------------------------------------------------+
| 2                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

SECOND(time)

Returns the second for time, in the range 0 to 59.
mysql> SELECT SECOND('10:05:03');
+---------------------------------------------------------+
| SECOND('10:05:03')                                      |
+---------------------------------------------------------+
| 3                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes and seconds, as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or numeric context.
mysql> SELECT SEC_TO_TIME(2378);
+---------------------------------------------------------+
| SEC_TO_TIME(2378)                                       |
+---------------------------------------------------------+
| 00:39:38                                                |
+---------------------------------------------------------+
1 row in set (0.00 sec)

STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format. The STR_TO_DATE() function returns a DATETIME value if the format string contains both date and time parts. Else, it returns a DATE or TIME value if the string contains only date or time parts.
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
+---------------------------------------------------------+
| STR_TO_DATE('04/31/2004', '%m/%d/%Y')                   |
+---------------------------------------------------------+
| 2004-04-31                                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

SUBDATE(date,INTERVAL expr unit) and SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
+---------------------------------------------------------+
| DATE_SUB('1998-01-02', INTERVAL 31 DAY)                 |
+---------------------------------------------------------+
| 1997-12-02                                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT SUBDATE('1998-01-02', INTERVAL 31 DAY);
+---------------------------------------------------------+
| SUBDATE('1998-01-02', INTERVAL 31 DAY)                  |
+---------------------------------------------------------+
| 1997-12-02                                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

SUBTIME(expr1,expr2)

The SUBTIME() function returns expr1 . expr2 expressed as a value in the same format as expr1. The expr1 value is a time or a datetime expression, while the expr2 value is a time expression.
mysql> SELECT SUBTIME('1997-12-31 23:59:59.999999',
   -> '1 1:1:1.000002');
+---------------------------------------------------------+
| SUBTIME('1997-12-31 23:59:59.999999'...                 |
+---------------------------------------------------------+
| 1997-12-30 22:58:58.999997                              |
+---------------------------------------------------------+
1 row in set (0.00 sec)

SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or in a numeric context.
mysql> SELECT SYSDATE();
+---------------------------------------------------------+
| SYSDATE()                                               |
+---------------------------------------------------------+
| 2006-04-12 13:47:44                                     |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.
mysql> SELECT TIME('2003-12-31 01:02:03');
+---------------------------------------------------------+
| TIME('2003-12-31 01:02:03')                             |
+---------------------------------------------------------+
| 01:02:03                                                |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIMEDIFF(expr1,expr2)

The TIMEDIFF() function returns expr1 . expr2 expressed as a time value. These expr1 and expr2 values are time or date-and-time expressions, but both must be of the same type.
mysql> SELECT TIMEDIFF('1997-12-31 23:59:59.000001',
   -> '1997-12-30 01:01:01.000002');
+---------------------------------------------------------+
| TIMEDIFF('1997-12-31 23:59:59.000001'.....              |
+---------------------------------------------------------+
|  46:58:57.999999                                        |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value. With two arguments, it adds the time expression expr2 to the date or datetime expression expr1 and returns the result as a datetime value.
mysql> SELECT TIMESTAMP('2003-12-31');
+---------------------------------------------------------+
| TIMESTAMP('2003-12-31')                                 |
+---------------------------------------------------------+
| 2003-12-31 00:00:00                                     |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIMESTAMPADD(unit,interval,datetime_expr)

This function adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given by the unit argument, which should be one of the following values −
  • FRAC_SECOND
  • SECOND, MINUTE
  • HOUR, DAY
  • WEEK
  • MONTH
  • QUARTER or
  • YEAR
The unit value may be specified using one of the keywords as shown or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.
mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
+---------------------------------------------------------+
| TIMESTAMPADD(MINUTE,1,'2003-01-02')                     |
+---------------------------------------------------------+
| 2003-01-02 00:01:00                                     |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1 and datetime_expr2. The unit for the result is given by the unit argument. The legal values for the unit are the same as those listed in the description of the TIMESTAMPADD() function.
mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
+---------------------------------------------------------+
| TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01')          |
+---------------------------------------------------------+
| 3                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIME_FORMAT(time,format)

This function is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours, minutes and seconds.
If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers produce a value larger than the usual range of 0 to 23. The other hour format specifiers produce the hour value modulo 12.
mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
+---------------------------------------------------------+
| TIME_FORMAT('100:00:00', '%H %k %h %I %l')              |
+---------------------------------------------------------+
| 100 100 04 04 4                                         |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TIME_TO_SEC(time)

Returns the time argument converted to seconds.
mysql> SELECT TIME_TO_SEC('22:23:00');
+---------------------------------------------------------+
| TIME_TO_SEC('22:23:00')                                 |
+---------------------------------------------------------+
| 80580                                                   |
+---------------------------------------------------------+
1 row in set (0.00 sec)

TO_DAYS(date)

Given a date, returns a day number (the number of days since year 0).
mysql> SELECT TO_DAYS(950501);
+---------------------------------------------------------+
| TO_DAYS(950501)                                         |
+---------------------------------------------------------+
| 728779                                                  |
+---------------------------------------------------------+
1 row in set (0.00 sec)

UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, this function returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since '1970-01-01 00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD.
mysql> SELECT UNIX_TIMESTAMP();
+---------------------------------------------------------+
| UNIX_TIMESTAMP()                                        |
+---------------------------------------------------------+
| 882226357                                               |
+---------------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT UNIX_TIMESTAMP('1997-10-04 22:23:00');
+---------------------------------------------------------+
| UNIX_TIMESTAMP('1997-10-04 22:23:00')                   |
+---------------------------------------------------------+
| 875996580                                               |
+---------------------------------------------------------+
1 row in set (0.00 sec)

UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is used in a string or numeric context.
mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
+---------------------------------------------------------+
| UTC_DATE(), UTC_DATE() + 0                              |
+---------------------------------------------------------+
| 2003-08-14, 20030814                                    |
+---------------------------------------------------------+
1 row in set (0.00 sec)

UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or numeric context.
mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
+---------------------------------------------------------+
| UTC_TIME(), UTC_TIME() + 0                              |
+---------------------------------------------------------+
| 18:07:53, 180753                                        |
+---------------------------------------------------------+
1 row in set (0.00 sec)

UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or in a YYYYMMDDHHMMSS format, depending on whether the function is used in a string or in a numeric context.
mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
+---------------------------------------------------------+
| UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0                    |
+---------------------------------------------------------+
| 2003-08-14 18:08:04, 20030814180804                     |
+---------------------------------------------------------+
1 row in set (0.00 sec)

WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() allows you to specify whether the week starts on a Sunday or a Monday and whether the return value should be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the default_week_format system variable is used
ModeFirst Day of weekRangeWeek 1 is the first week.
0Sunday0-53with a Sunday in this year
1Monday0-53with more than 3 days this year
2Sunday1-53with a Sunday in this year
3Monday1-53with more than 3 days this year
4Sunday0-53with more than 3 days this year
5Monday0-53with a Monday in this year
6Sunday1-53with more than 3 days this year
7Monday1-53with a Monday in this year
mysql> SELECT WEEK('1998-02-20');
+---------------------------------------------------------+
| WEEK('1998-02-20')                                      |
+---------------------------------------------------------+
| 7                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, . 6 = Sunday).
mysql> SELECT WEEKDAY('1998-02-03 22:23:00');
+---------------------------------------------------------+
| WEEKDAY('1998-02-03 22:23:00')                          |
+---------------------------------------------------------+
| 1                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility function that is equivalent to WEEK(date,3).
mysql> SELECT WEEKOFYEAR('1998-02-20');
+---------------------------------------------------------+
| WEEKOFYEAR('1998-02-20')                                |
+---------------------------------------------------------+
| 8                                                       |
+---------------------------------------------------------+
1 row in set (0.00 sec)

YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the .zero. date.
mysql> SELECT YEAR('98-02-03');
+---------------------------------------------------------+
| YEAR('98-02-03')                                        |
+---------------------------------------------------------+
| 1998                                                    |
+---------------------------------------------------------+
1 row in set (0.00 sec)

YEARWEEK(date), YEARWEEK(date,mode)

Returns the year and the week for a date. The mode argument works exactly like the mode argument to the WEEK() function. The year in the result may be different from the year in the date argument for the first and the last week of the year.
mysql> SELECT YEARWEEK('1987-01-01');
+---------------------------------------------------------+
| YEAR('98-02-03')YEARWEEK('1987-01-01')                  |
+---------------------------------------------------------+
| 198653                                                  |
+---------------------------------------------------------+
1 row in set (0.00 sec)
Note − The week number is different from what the WEEK() function would return (0) for optional arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

SQL - Temporary Tables

What are Temporary Tables?

There are RDBMS, which support temporary tables. Temporary Tables are a great feature that lets you store and process intermediate results by using the same selection, update, and join capabilities that you can use with typical SQL Server tables.
The temporary tables could be very useful in some cases to keep temporary data. The most important thing that should be known for temporary tables is that they will be deleted when the current client session terminates.
Temporary tables are available in MySQL version 3.23 onwards. If you use an older version of MySQL than 3.23, you can't use temporary tables, but you can use heap tables.
As stated earlier, temporary tables will only last as long as the session is alive. If you run the code in a PHP script, the temporary table will be destroyed automatically when the script finishes executing. If you are connected to the MySQL database server through the MySQL client program, then the temporary table will exist until you close the client or manually destroy the table.

Example

Here is an example showing you the usage of a temporary table.
mysql> CREATE TEMPORARY TABLE SALESSUMMARY (
   -> product_name VARCHAR(50) NOT NULL
   -> , total_sales DECIMAL(12,2) NOT NULL DEFAULT 0.00
   -> , avg_unit_price DECIMAL(7,2) NOT NULL DEFAULT 0.00
   -> , total_units_sold INT UNSIGNED NOT NULL DEFAULT 0
);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO SALESSUMMARY
   -> (product_name, total_sales, avg_unit_price, total_units_sold)
   -> VALUES
   -> ('cucumber', 100.25, 90, 2);

mysql> SELECT * FROM SALESSUMMARY;
+--------------+-------------+----------------+------------------+
| product_name | total_sales | avg_unit_price | total_units_sold |
+--------------+-------------+----------------+------------------+
| cucumber     |      100.25 |          90.00 |                2 |
+--------------+-------------+----------------+------------------+
1 row in set (0.00 sec)
When you issue a SHOW TABLES command, then your temporary table will not be listed out in the list. Now, if you log out of the MySQL session and then issue a SELECT command, you will find no data available in the database. Even your temporary table will not be existing.

Dropping Temporary Tables

By default, all the temporary tables are deleted by MySQL when your database connection gets terminated. Still if you want to delete them in between, then you can do so by issuing a DROP TABLE command.
Following is an example on dropping a temporary table.
mysql> CREATE TEMPORARY TABLE SALESSUMMARY (
   -> product_name VARCHAR(50) NOT NULL
   -> , total_sales DECIMAL(12,2) NOT NULL DEFAULT 0.00
   -> , avg_unit_price DECIMAL(7,2) NOT NULL DEFAULT 0.00
   -> , total_units_sold INT UNSIGNED NOT NULL DEFAULT 0
);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO SALESSUMMARY
   -> (product_name, total_sales, avg_unit_price, total_units_sold)
   -> VALUES
   -> ('cucumber', 100.25, 90, 2);

mysql> SELECT * FROM SALESSUMMARY;
+--------------+-------------+----------------+------------------+
| product_name | total_sales | avg_unit_price | total_units_sold |
+--------------+-------------+----------------+------------------+
| cucumber     |      100.25 |          90.00 |                2 |
+--------------+-------------+----------------+------------------+
1 row in set (0.00 sec)
mysql> DROP TABLE SALESSUMMARY;
mysql>  SELECT * FROM SALESSUMMARY;
ERROR 1146: Table 'TUTORIALS.SALESSUMMARY' doesn't exist

SQL - Clone Tables

There may be a situation when you need an exact copy of a table and the CREATE TABLE ... or the SELECT... commands does not suit your purposes because the copy must include the same indexes, default values and so forth.
If you are using MySQL RDBMS, you can handle this situation by adhering to the steps given below −
  • Use SHOW CREATE TABLE command to get a CREATE TABLE statement that specifies the source table's structure, indexes and all.
  • Modify the statement to change the table name to that of the clone table and execute the statement. This way you will have an exact clone table.
  • Optionally, if you need the table contents copied as well, issue an INSERT INTO or a SELECT statement too.

Example

Try out the following example to create a clone table for TUTORIALS_TBL whose structure is as follows −
Step 1 − Get the complete structure about the table.
SQL> SHOW CREATE TABLE TUTORIALS_TBL \G; 
*************************** 1. row *************************** 
      Table: TUTORIALS_TBL 
Create Table: CREATE TABLE 'TUTORIALS_TBL' ( 
  'tutorial_id' int(11) NOT NULL auto_increment, 
  'tutorial_title' varchar(100) NOT NULL default '', 
  'tutorial_author' varchar(40) NOT NULL default '', 
  'submission_date' date default NULL, 
  PRIMARY KEY  ('tutorial_id'), 
  UNIQUE KEY 'AUTHOR_INDEX' ('tutorial_author') 
) TYPE = MyISAM 
1 row in set (0.00 sec)
Step 2 − Rename this table and create another table.
SQL> CREATE TABLE `CLONE_TBL` ( 
  -> 'tutorial_id' int(11) NOT NULL auto_increment, 
  -> 'tutorial_title' varchar(100) NOT NULL default '', 
  -> 'tutorial_author' varchar(40) NOT NULL default '', 
  -> 'submission_date' date default NULL, 
  -> PRIMARY KEY  (`tutorial_id'), 
  -> UNIQUE KEY 'AUTHOR_INDEX' ('tutorial_author') 
-> ) TYPE = MyISAM; 
Query OK, 0 rows affected (1.80 sec) 
Step 3 − After executing step 2, you will clone a table in your database. If you want to copy data from an old table, then you can do it by using the INSERT INTO... SELECT statement.
SQL> INSERT INTO CLONE_TBL (tutorial_id, 
   ->                        tutorial_title, 
   ->                        tutorial_author, 
   ->                        submission_date) 
   -> SELECT tutorial_id,tutorial_title, 
   ->        tutorial_author,submission_date, 
   -> FROM TUTORIALS_TBL; 
Query OK, 3 rows affected (0.07 sec) 
Records: 3  Duplicates: 0  Warnings: 0 
Finally, you will have an exact clone table as you wanted to have.

SQL - Sub Queries

A Subquery or Inner query or a Nested query is a query within another SQL query and embedded within the WHERE clause.
A subquery is used to return data that will be used in the main query as a condition to further restrict the data to be retrieved.
Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the operators like =, <, >, >=, <=, IN, BETWEEN, etc.
There are a few rules that subqueries must follow −
  • Subqueries must be enclosed within parentheses.
  • A subquery can have only one column in the SELECT clause, unless multiple columns are in the main query for the subquery to compare its selected columns.
  • An ORDER BY command cannot be used in a subquery, although the main query can use an ORDER BY. The GROUP BY command can be used to perform the same function as the ORDER BY in a subquery.
  • Subqueries that return more than one row can only be used with multiple value operators such as the IN operator.
  • The SELECT list cannot include any references to values that evaluate to a BLOB, ARRAY, CLOB, or NCLOB.
  • A subquery cannot be immediately enclosed in a set function.
  • The BETWEEN operator cannot be used with a subquery. However, the BETWEEN operator can be used within the subquery.

Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows −
SELECT column_name [, column_name ]
FROM   table1 [, table2 ]
WHERE  column_name OPERATOR
   (SELECT column_name [, column_name ]
   FROM table1 [, table2 ]
   [WHERE])

Example

Consider the CUSTOMERS table having the following records −
+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  35 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+
Now, let us check the following subquery with a SELECT statement.
SQL> SELECT * 
   FROM CUSTOMERS 
   WHERE ID IN (SELECT ID 
         FROM CUSTOMERS 
         WHERE SALARY > 4500) ;
This would produce the following result.
+----+----------+-----+---------+----------+
| ID | NAME     | AGE | ADDRESS | SALARY   |
+----+----------+-----+---------+----------+
|  4 | Chaitali |  25 | Mumbai  |  6500.00 |
|  5 | Hardik   |  27 | Bhopal  |  8500.00 |
|  7 | Muffy    |  24 | Indore  | 10000.00 |
+----+----------+-----+---------+----------+

Subqueries with the INSERT Statement

Subqueries also can be used with INSERT statements. The INSERT statement uses the data returned from the subquery to insert into another table. The selected data in the subquery can be modified with any of the character, date or number functions.
The basic syntax is as follows.
INSERT INTO table_name [ (column1 [, column2 ]) ]
   SELECT [ *|column1 [, column2 ]
   FROM table1 [, table2 ]
   [ WHERE VALUE OPERATOR ]

Example

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy the complete CUSTOMERS table into the CUSTOMERS_BKP table, you can use the following syntax.
SQL> INSERT INTO CUSTOMERS_BKP
   SELECT * FROM CUSTOMERS 
   WHERE ID IN (SELECT ID 
   FROM CUSTOMERS) ;

Subqueries with the UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple columns in a table can be updated when using a subquery with the UPDATE statement.
The basic syntax is as follows.
UPDATE table
SET column_name = new_value
[ WHERE OPERATOR [ VALUE ]
   (SELECT COLUMN_NAME
   FROM TABLE_NAME)
   [ WHERE) ]

Example

Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table. The following example updates SALARY by 0.25 times in the CUSTOMERS table for all the customers whose AGE is greater than or equal to 27.
SQL> UPDATE CUSTOMERS
   SET SALARY = SALARY * 0.25
   WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP
      WHERE AGE >= 27 );
This would impact two rows and finally CUSTOMERS table would have the following records.
+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  35 | Ahmedabad |   125.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  2125.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+

Subqueries with the DELETE Statement

The subquery can be used in conjunction with the DELETE statement like with any other statements mentioned above.
The basic syntax is as follows.
DELETE FROM TABLE_NAME
[ WHERE OPERATOR [ VALUE ]
   (SELECT COLUMN_NAME
   FROM TABLE_NAME)
   [ WHERE) ]

Example

Assuming, we have a CUSTOMERS_BKP table available which is a backup of the CUSTOMERS table. The following example deletes the records from the CUSTOMERS table for all the customers whose AGE is greater than or equal to 27.
SQL> DELETE FROM CUSTOMERS
   WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP
      WHERE AGE >= 27 );
This would impact two rows and finally the CUSTOMERS table would have the following records.
+----+----------+-----+---------+----------+
| ID | NAME     | AGE | ADDRESS | SALARY   |
+----+----------+-----+---------+----------+
|  2 | Khilan   |  25 | Delhi   |  1500.00 |
|  3 | kaushik  |  23 | Kota    |  2000.00 |
|  4 | Chaitali |  25 | Mumbai  |  6500.00 |
|  6 | Komal    |  22 | MP      |  4500.00 |
|  7 | Muffy    |  24 | Indore  | 10000.00 |
+----+----------+-----+---------+----------+

SQL - Using Sequences

A sequence is a set of integers 1, 2, 3, ... that are generated in order on demand. Sequences are frequently used in databases because many applications require each row in a table to contain a unique value and sequences provide an easy way to generate them.
This chapter describes how to use sequences in MySQL.

Using AUTO_INCREMENT column

The simplest way in MySQL to use sequences is to define a column as AUTO_INCREMENT and leave the rest to MySQL to take care.

Example

Try out the following example. This will create a table and after that it will insert a few rows in this table where it is not required to give a record ID because its auto-incremented by MySQL.
mysql> CREATE TABLE INSECT
   -> (
   -> id INT UNSIGNED NOT NULL AUTO_INCREMENT,
   -> PRIMARY KEY (id),
   -> name VARCHAR(30) NOT NULL, # type of insect
   -> date DATE NOT NULL, # date collected
   -> origin VARCHAR(30) NOT NULL # where collected
);
Query OK, 0 rows affected (0.02 sec)
mysql> INSERT INTO INSECT (id,name,date,origin) VALUES
   -> (NULL,'housefly','2001-09-10','kitchen'),
   -> (NULL,'millipede','2001-09-10','driveway'),
   -> (NULL,'grasshopper','2001-09-10','front yard');
Query OK, 3 rows affected (0.02 sec)
Records: 3  Duplicates: 0  Warnings: 0
mysql> SELECT * FROM INSECT ORDER BY id;
+----+-------------+------------+------------+
| id | name        | date       | origin     |
+----+-------------+------------+------------+
|  1 | housefly    | 2001-09-10 | kitchen    |
|  2 | millipede   | 2001-09-10 | driveway   |
|  3 | grasshopper | 2001-09-10 | front yard |
+----+-------------+------------+------------+
3 rows in set (0.00 sec)

Obtain AUTO_INCREMENT Values

The LAST_INSERT_ID( ) is an SQL function, so you can use it from within any client that understands how to issue SQL statements. Otherwise PERL and PHP scripts provide exclusive functions to retrieve auto-incremented value of last record.

PERL Example

Use the mysql_insertid attribute to obtain the AUTO_INCREMENT value generated by a query. This attribute is accessed through either a database handle or a statement handle, depending on how you issue the query. The following example references it through the database handle.
$dbh->do ("INSERT INTO INSECT (name,date,origin)
VALUES('moth','2001-09-14','windowsill')");
my $seq = $dbh->{mysql_insertid};

PHP Example

After issuing a query that generates an AUTO_INCREMENT value, retrieve the value by calling the mysql_insert_id( ) function.
mysql_query ("INSERT INTO INSECT (name,date,origin)
VALUES('moth','2001-09-14','windowsill')", $conn_id);
$seq = mysql_insert_id ($conn_id);

Renumbering an Existing Sequence

There may be a case when you have deleted many records from a table and you want to re-sequence all the records. This can be done by using a simple trick, but you should be very careful to do this and check if your table is having a join with another table or not.
If you determine that resequencing an AUTO_INCREMENT column is unavoidable, the way to do it is to drop the column from the table, then add it again.
The following example shows how to renumber the id values in the insect table using this technique.
mysql> ALTER TABLE INSECT DROP id;
mysql> ALTER TABLE insect
   -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST,
   -> ADD PRIMARY KEY (id);

Starting a Sequence at a Particular Value

By default, MySQL will start the sequence from 1, but you can specify any other number as well at the time of table creation.
The following code block has an example where MySQL will start sequence from 100.
mysql> CREATE TABLE INSECT
   -> (
   -> id INT UNSIGNED NOT NULL AUTO_INCREMENT = 100,
   -> PRIMARY KEY (id),
   -> name VARCHAR(30) NOT NULL, # type of insect
   -> date DATE NOT NULL, # date collected
   -> origin VARCHAR(30) NOT NULL # where collected
);
Alternatively, you can create the table and then set the initial sequence value with ALTER TABLE.
mysql> ALTER TABLE t AUTO_INCREMENT = 100;

SQL - Handling Duplicates

There may be a situation when you have multiple duplicate records in a table. While fetching such records, it makes more sense to fetch only unique records instead of fetching duplicate records.
The SQL DISTINCT keyword, which we have already discussed is used in conjunction with the SELECT statement to eliminate all the duplicate records and by fetching only the unique records.

Syntax

The basic syntax of a DISTINCT keyword to eliminate duplicate records is as follows.
SELECT DISTINCT column1, column2,.....columnN 
FROM table_name
WHERE [condition]

Example

Consider the CUSTOMERS table having the following records.
+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+
First, let us see how the following SELECT query returns duplicate salary records.
SQL> SELECT SALARY FROM CUSTOMERS
   ORDER BY SALARY;
This would produce the following result where the salary of 2000 is coming twice which is a duplicate record from the original table.
+----------+
| SALARY   |
+----------+
|  1500.00 |
|  2000.00 |
|  2000.00 |
|  4500.00 |
|  6500.00 |
|  8500.00 |
| 10000.00 |
+----------+
Now, let us use the DISTINCT keyword with the above SELECT query and see the result.
SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
   ORDER BY SALARY;
This would produce the following result where we do not have any duplicate entry.
+----------+
| SALARY   |
+----------+
|  1500.00 |
|  2000.00 |
|  4500.00 |
|  6500.00 |
|  8500.00 |
| 10000.00 |
+----------+

SQL - Injection

If you take a user input through a webpage and insert it into a SQL database, there is a chance that you have left yourself wide open for a security issue known as the SQL Injection. This chapter will teach you how to help prevent this from happening and help you secure your scripts and SQL statements in your server side scripts such as a PERL Script.
Injection usually occurs when you ask a user for input, like their name and instead of a name they give you a SQL statement that you will unknowingly run on your database. Never trust user provided data, process this data only after validation; as a rule, this is done by Pattern Matching.
In the example below, the name is restricted to the alphanumerical characters plus underscore and to a length between 8 and 20 characters (modify these rules as needed).
if (preg_match("/^\w{8,20}$/", $_GET['username'], $matches)) {
   $result = mysql_query("SELECT * FROM CUSTOMERS 
      WHERE name = $matches[0]");
} else {
   echo "user name not accepted";
}
To demonstrate the problem, consider this excerpt −
// supposed input
$name = "Qadir'; DELETE FROM CUSTOMERS;";
mysql_query("SELECT * FROM CUSTOMSRS WHERE name='{$name}'");
The function call is supposed to retrieve a record from the CUSTOMERS table where the name column matches the name specified by the user. Under normal circumstances, $name would only contain alphanumeric characters and perhaps spaces, such as the string ilia. But here, by appending an entirely new query to $name, the call to the database turns into disaster; the injected DELETE query removes all records from the CUSTOMERS table.
Fortunately, if you use MySQL, the mysql_query() function does not permit query stacking or executing multiple SQL queries in a single function call. If you try to stack queries, the call fails.
However, other PHP database extensions, such as SQLite and PostgreSQL happily perform stacked queries, executing all the queries provided in one string and creating a serious security problem.

Preventing SQL Injection

You can handle all escape characters smartly in scripting languages like PERL and PHP. The MySQL extension for PHP provides the function mysql_real_escape_string() to escape input characters that are special to MySQL.
if (get_magic_quotes_gpc()) {
   $name = stripslashes($name);
}
$name = mysql_real_escape_string($name);
mysql_query("SELECT * FROM CUSTOMERS WHERE name='{$name}'");

The LIKE Quandary

To address the LIKE quandary, a custom escaping mechanism must convert user-supplied '%' and '_' characters to literals. Use addcslashes(), a function that lets you specify a character range to escape.
$sub = addcslashes(mysql_real_escape_string("%str"), "%_");
// $sub == \%str\_
mysql_query("SELECT * FROM messages 
   WHERE subject LIKE '{$sub}%'");

SQL - Database Tunning

It takes time to become a Database Expert or an expert Database Administrator. This all comes with lot of experience in various database designs and good trainings.
But the following list may be helpful for the beginners to have a nice database performance −
  • Use 3BNF database design explained in this tutorial in RDBMS Concepts chapter.
  • Avoid number-to-character conversions because numbers and characters compare differently and lead to performance downgrade.
  • While using SELECT statement, only fetch whatever information is required and avoid using * in your SELECT queries because it would load the system unnecessarily.
  • Create your indexes carefully on all the tables where you have frequent search operations. Avoid index on the tables where you have less number of search operations and more number of insert and update operations.
  • A full-table scan occurs when the columns in the WHERE clause do not have an index associated with them. You can avoid a full-table scan by creating an index on columns that are used as conditions in the WHERE clause of an SQL statement.
  • Be very careful of equality operators with real numbers and date/time values. Both of these can have small differences that are not obvious to the eye but that make an exact match impossible, thus preventing your queries from ever returning rows.
  • Use pattern matching judiciously. LIKE COL% is a valid WHERE condition, reducing the returned set to only those records with data starting with the string COL. However, COL%Y does not further reduce the returned results set since %Y cannot be effectively evaluated. The effort to do the evaluation is too large to be considered. In this case, the COL% is used, but the %Y is thrown away. For the same reason, a leading wildcard %COL effectively prevents the entire filter from being used.
  • Fine tune your SQL queries examining the structure of the queries (and subqueries), the SQL syntax, to discover whether you have designed your tables to support fast data manipulation and written the query in an optimum manner, allowing your DBMS to manipulate the data efficiently.
  • For queries that are executed on a regular basis, try to use procedures. A procedure is a potentially large group of SQL statements. Procedures are compiled by the database engine and then executed. Unlike an SQL statement, the database engine need not optimize the procedure before it is executed.
  • Avoid using the logical operator OR in a query if possible. OR inevitably slows down nearly any query against a table of substantial size.
  • You can optimize bulk data loads by dropping indexes. Imagine the history table with many thousands of rows. That history table is also likely to have one or more indexes. When you think of an index, you normally think of faster table access, but in the case of batch loads, you can benefit by dropping the index(es).
  • When performing batch transactions, perform COMMIT at after a fair number of records creation in stead of creating them after every record creation.
  • Plan to defragment the database on a regular basis, even if doing so means developing a weekly routine.

Built-In Tuning Tools

Oracle has many tools for managing SQL statement performance but among them two are very popular. These two tools are −
  • Explain plan − tool identifies the access path that will be taken when the SQL statement is executed.
  • tkprof − measures the performance by time elapsed during each phase of SQL statement processing.
If you want to simply measure the elapsed time of a query in Oracle, you can use the SQL*Plus command SET TIMING ON.

Check your RDBMS documentation for more detail on the above-mentioned tools and defragmenting the database.

Share this article :

Activities

Latest Post

SCRIPTS

DATABASES

BIG DATA & ANALYTICS

RELATIVE ARTICLE

 
Support : Copyright © 2014. SUNTEC CAMPUS TUTORIAL - All Rights Reserved
Site Designed by Creating Website Inspired Support
Proudly powered by Sun Microcreators